January 2008

Resolving the Spent Fuel Issue for New Nuclear Power Plants

Fred P. Bosselman
IIT Chicago-Kent College of Law, fbosselm@kentlaw.iit.edu

Follow this and additional works at: https://scholarship.kentlaw.iit.edu/fac_schol

Part of the Energy and Utilities Law Commons, and the Environmental Law Commons

Recommended Citation
Available at: https://scholarship.kentlaw.iit.edu/fac_schol/110

This Article is brought to you for free and open access by the Faculty Scholarship at Scholarly Commons @ IIT Chicago-Kent College of Law. It has been accepted for inclusion in All Faculty Scholarship by an authorized administrator of Scholarly Commons @ IIT Chicago-Kent College of Law. For more information, please contact jwenger@kentlaw.iit.edu, ebarney@kentlaw.iit.edu.
Resolving the Spent Fuel Issue for New Nuclear Power Plants

Fred Bosselman*

In the United States, opponents of new nuclear power plants argue that no new plants should be built until we are prepared to bury the spent fuel from power plants in a permanent storage facility.\(^1\) In my opinion, it is unnecessary to resolve this issue before building new nuclear power plants. New plants can use dry cask storage as a safe and secure method of handling spent fuel for the next fifty years or more.\(^2\)

When the fuel used in nuclear power plants loses enough of its potency, it must be removed from the reactor and replaced. At this stage it is referred to as “spent fuel,” but it still remains highly radioactive.\(^3\) Some components of the fuel lose almost all of their radioactivity within a matter of days, while others will remain dangerously radioactive for thousands of years.\(^4\)

All existing commercial plants store spent fuel for at least five years in water-filled pools on the power plant site. After five years, plant operators are allowed to switch to dry cask storage in a Nuclear Regulatory Commission-approved cask located on the power plant site.\(^5\) Dry cask storage uses concrete or steel containers to shield the surroundings from radiation. The fuel is cooled by inert gas or air.

The casks are created to resist temperature extremes, floods, tornados, and projectiles.\(^6\) Because dry cask storage does not require

Copyright © 2008 by the Regents of the University of California.

* [AUTHOR BIO INFORMATION]

any electricity, water, or maintenance, its operating costs are much lower than for water pool storage. The dry casks do require monitoring and surveillance, but not the constant supervision and operation that water pools require.

![Diagram of Dry Storage of Spent Fuel](image)

Diagram courtesy of the Nuclear Regulatory Commission

After the terrorist attacks of 2001, Congress asked the National Research Council (an arm of the National Academy of Sciences and the National Academy of Engineering) to study the safety risks associated with the continued storage of spent fuel at power plant sites. The classified report of the study was delivered to the Nuclear Regulatory Commission in 2004, and a censored version was subsequently released to the public.7 Among the report’s findings was:

Dry cask storage for older, cooler spent fuel has two inherent advantages over pool storage: (1) It is a passive system that relies on natural air circulation for cooling; and (2) it divides the inventory of that spent fuel among a large number of discrete, robust containers. These factors make it more difficult to attack a large amount of spent fuel at one time and also reduce the consequences of such attacks.... The robust construction of these casks prevents large-scale releases of any.xaml

8. Id. at 70. The report was critical of some existing spent fuel pool designs, but pointed out how these problems could be corrected in new plants. See id. at 38-59.
In a separate report, the National Research Council noted that the temporary storage of spent fuel in retrievable form would provide opportunities for re-use of the material. If the longest-lived radionuclides in spent fuel were to be transmuted into short-lived nuclides, the waste “would contain only relatively short-lived fission products that would go into a repository and decay to the background level of high-grade uranium ore in about 250 years.”

Other scientific studies have also endorsed the safety of dry cask storage. The bipartisan National Commission on Energy Policy said that dry cask storage “is a proven, safe, inexpensive waste-sequestering technology that would be good for 100 years or more, providing an interim, back-up solution against the possibility that Yucca Mountain is further delayed or derailed—or cannot be adequately expanded before a further geologic repository can be ready.”

And a few months ago the InterAcademy Council, which includes our National Academy of Sciences and similar groups from other nations, also found that a consensus is beginning to emerge among experts that the objective of waste storage should shift from irretrievable storage to retrievable storage. In other words, wastes would be stored in dry casks with the expectation that they will require further handling in a few decades.

The Union of Concerned Scientists also agrees that properly designed dry cask storage would be a safe option at new nuclear power plants. “Fortunately, there is no immediate need to open a permanent repository, as interim storage of spent fuel in dry casks at reactor sites is an economically viable and secure option for at least 50 years—if such sites are hardened against attack. New reactors could build in more robust interim storage from the beginning.”

The “interim storage of spent fuel in hardened dry casks can be made an acceptably safe and

10. The process of transmutation differs for each of the various long-lived radionuclides. The general idea is to bombard them with high-energy neutron fluxes created either by an accelerator or a special reactor. See Patricia A. Baisden, A Renaissance for Nuclear Power?, in Nat’l Research Council, Energy and Transportation: Challenges for the Chemical Sciences in the 21st Century 52 (National Academy Press, 2003); see also Daniel Westlen, Reducing Radiotoxicity in the Long Run, 49 Progress in Nuclear Energy 597 (2007).

economically viable option for at least 50 years with a few relatively simple modifications, such as surrounding them with an earthen berm.\footnote{14}

So why hasn’t the government adopted dry cask storage as national policy? For 25 years, the State of Nevada has been fighting Congress’ selection of Yucca Mountain, Nevada, as the site for permanent disposal of high-level nuclear waste.\footnote{15} Despite Nevada’s objections, work has proceeded on preparation of the site, using funds paid for by the utilities that use nuclear power,\footnote{16} and DOE currently estimates that another 23 billion dollars will be needed to open the site by the year 2017.\footnote{17} Attempts by the utilities to recover some of their costs incurred by the delay in completing Yucca Mountain have become mired in litigation.\footnote{18} Neither Nevada nor the DOE is inclined to compromise.

Congress could sidestep the impasse by designating properly designed spent fuel pools plus dry cask storage as adequate provision for dealing with the waste disposal needs of new nuclear power plants. There is some indication that attempts might be made in 2008 to attach such provisions to pending climate change legislation in the Senate.\footnote{19} But the history of this long-running battle doesn’t offer much hope that a sensible solution will be reached any time soon.

Perhaps the public would demand a rational approach if it got over the silly idea that nuclear energy was invented by mad scientists bent on world destruction. In fact, radioactive elements in the rocks of the earth have always created nuclear energy. “This naturally occurring nuclear fission is what maintains the warmth of the earth’s interior, keeping the tectonic plates in motion, causing mountains to rise up, and driving a variety of other natural processes.”\footnote{20} The fact that nuclear energy can cause harm should not cause us to shun it any more than lightning should cause us to shun electricity.

\begin{footnotes}
\end{footnotes}