January 2012

Incentivizing the Utilization of Pharmacogenomics in Drug Development

Valerie Gutmann Koch

*IIT Chicago-Kent College of Law, valeriegutmannkoch@gmail.com

Follow this and additional works at: http://scholarship.kentlaw.iit.edu/fac_schol
Part of the Health Law and Policy Commons, and the Science and Technology Law Commons

Recommended Citation

This Article is brought to you for free and open access by the Faculty Scholarship at Scholarly Commons @ IIT Chicago-Kent College of Law. It has been accepted for inclusion in All Faculty Scholarship by an authorized administrator of Scholarly Commons @ IIT Chicago-Kent College of Law. For more information, please contact dginsberg@kentlaw.iit.edu.
INCENTIVIZING THE UTILIZATION OF PHARMACOGENOMICS IN DRUG DEVELOPMENT

VALERIE GUTMANN KOCH*

I. INTRODUCTION

The last decades have witnessed remarkable advancements in the fields of genetics and genomics, highlighted by the successful completion of the map of the human genome in 2003.1 With this achievement came scientific possibilities that, only a few decades earlier, seemed more science fiction than reality. Of these developments, pharmacogenomics is hailed by many as a panacea for problems associated with pharmaceutical drug use and development.2 The Human Genome Project (HGP) and associated research have demonstrated that all human beings share 99.9 percent of their DNA.3 Pharmacogenomics focuses on the 0.1 percent differences between individuals and promises to allow physicians to tailor a patient’s prescription according to his or her genetic profile, reducing painful and sometimes deadly side effects, ensuring appropriate dosage decisions, and targeting specific disease pathways.4

Copyright © 2012 by Valerie Gutmann Koch.

* Valerie Gutmann Koch, J.D. is the Senior Attorney for the New York State Task Force on Life and the Law. The views expressed here are those of the author, and do not reflect those of the New York State Department of Health, Health Research, Inc., or the Task Force. The author would like to acknowledge Peter Hutt in the conception of this article.

1. The Human Genome Project “sequenced a single genome” for about 4 billion dollars, and Craig Venter, a leader in the field of biotechnology, did it for 100 million dollars. Getting Personal: The Promise of Cheap Genome Sequencing, ECONOMIST (Apr. 16, 2009), http://www.economist.com/node/13437974.?story_id=13437974.


4. See id. (detailing the 0.1 percent difference between individuals); see also Meurer, supra note 2, at 403 (outlining the benefits of pharmacogenomics).
However, pharmacogenomics is unlikely to fulfill the promise of providing “miracle drugs” to all. The pharmaceutical industry may be reluctant to pursue pharmacogenomics because of the costs associated with developing products for a segmented patient population, and the current regulatory and legal system may be ill-prepared to deal with the practical, economic, legal, and ethical issues associated with genetic discoveries. This article explores a number of dimensions of the problems associated with pharmacogenomic discoveries and considers the future of this exciting and complex field.

A. The History and Promise of Pharmacogenomics

Genomics can be defined as “the study of the function and structure of genes and gene products.” Pharmacogenomics, a field within genomics, refers to the study of how an individual, based on his or her genetic makeup, responds to drugs, focusing on one’s susceptibility to disease and response to drug therapies.

The history of pharmacogenomics started in the early twentieth century with a scientific concentration on Mendelian effects on drug response. The discipline of pharmacogenetics predated pharmacogenomics, and was first articulated by Arno Motulsky in 1957, who asserted that “otherwise innocuous genetic traits” might underlie variation among individuals in drug response, based on individual differences in enzyme structure and function. Although the field of pharmacogenetics is relatively well-established, it has only recently had a significant impact on the pharmaceutical industry.

5. See infra notes 67–68 and accompanying text (explaining that the benefits of individually-tailored drugs are overstated).

6. Meurer, supra note 2, at 401 (explaining the private returns and social costs associated with advancements in pharmacogenomics).

7. See Robertson et al., supra note 2, at 159–64 (reviewing a variety of regulatory challenges associated with pharmacogenomics).

8. Meurer, supra note 2, at 402.

9. David Housman & Fred D. Ledley, Why Pharmacogenomics? Why Now?, 16 NATURE BIOTECH. 2, 2 (Supp. 1998). It is important to ensure that pharmacogenomics is distinguished from predisposition or predictive testing, the latter of which “provide[s] statistical inferences concerning the risk of a disease or its prognosis.” Id. More specifically within pharmacogenomics, pharmacokinetik is defined as the study of the variation in drug metabolism, while pharmacodynamics is the mechanism of a drug on its target. Andrew Marshall, Laying the Foundations for Personalized Medicines, 16 NATURE BIOTECH. 6, 6–7 (Supp. 1998).

10. David B. Goldstein et al., Pharmacogenetics Goes Genomic, 4 NATURE REV. GENETICS 937 (2003). Gregor Mendel “discovered” the laws of genetics in 1865 with his famous studies of the heredity of traits in pea pod plants. Salvatore Giorgianni, Solving the Mysteries of Inheritance, PFIzer J., Summer 1998, at 1, 1. His discoveries were generally ignored until the next century, when they were “rediscovered” and applied over a number of disciplines. Id.


13. See Housman & Ledley, supra note 9, at 2 (explaining recent developments contributing to the significance of pharmacogenetics).
The terms pharmacogenetics and pharmacogenomics are often used interchangeably; however, it is necessary to understand that a distinction exists. Some merely define pharmacogenomics as the ensuing broadening of pharmacogenetics. While pharmacogenetics applies to the reaction of genetically diverse patients to a particular medicine (“one drug across many genomes”), pharmacogenomics encompasses pharmacogenetics, but also applies at earlier phases of drug development, in determining which compounds will be most effective for a particular genome (“many drugs across one genome”). Pharmacogenetics is most useful for already-available drugs, in that it can be applied to existing drugs and development programs; in contrast, “pharmacogenomics will exert its impact at the drug discovery stage and will thus appear in products over the long term.”

Regardless of their definitional distinctions, the goals of both pharmacogenomics and pharmacogenetics are identical:

[T]o improve the diagnosis of genetic disease; to develop drugs to fight genetic disease; to make clinical testing of drugs more efficient by identifying populations in which the drugs are likely to be especially efficacious . . . and, using genetic information about patients, to maximize therapeutic benefit and minimize harmful side effects by prescribing drugs to targeted patient populations.

In the area of drug discovery and development, pharmacogenomics promises to offer better matching between patients and the appropriate drugs and to reduce or

15. Id.
17. NUFFIELD COUNCIL ON BIOETHICS, supra note 14, at 4 tbl.1.1; Shah, supra note 16, at 3, 4. The World Health Organization provides the following distinction:

Pharmacogenetics refers to the study of DNA sequence variation as it relates to differential drug response of individuals, i.e., the use of genomics to determine an individual’s response. Pharmacogenomics refers to the use of DNA-based genotyping in order to target pharmaceutical agents to specific patient populations in the design of drugs.

eliminate adverse effects, enabling correct dosage according to one’s particular metabolism.

1. Designer Drugs, Adverse Drug Reactions, and Metabolism

The promise most commonly associated with pharmacogenomics is the advancement of new “designer drugs” that may be developed to meet an individual’s particular health needs, thereby increasing a drug’s effectiveness. The completion of the HGP was accompanied by the potential for the development of “individualized medicine,” and it has been suggested that applying genetic knowledge to drug development is as simple as “start[ing] backwards and build[ing] a drug that addresses the problem.” Clinical researchers identify drug targets or pathway proteins as potential objectives for pharmacogenomic drug development.

Dr. Craig Venter, one of the major players behind the HGP, has predicted that eventually each of us “might carry something similar to a bar code that identifies our genotype, and this would help us make healthcare decisions.” For example, since the late 1990’s, pharmacogenetics has been used to predict the effectiveness of Herceptin, a drug for metastatic breast cancer. Herceptin is especially effective in shrinking tumors and extending lives for approximately thirty percent of breast cancer patients—those whose tumors have unusually high amounts of the HER2/neu protein.

20. Meurer, supra note 2, at 401.

21. See id. at 401 (noting the potential for individualized drugs from pharmacogenomics); see also D.C. Wertz, Ethical, Social and Legal Issues in Pharmacogenomics, 3 PHARMACOGENOMICS J. 194, 194 (2003) (discussing the promise of designing drugs for custom medicines). Currently, most drugs have an average effectiveness rate of 50 percent. Lawrence J. Lesko & Issam Zineh, DNA, Drugs & Chariots: On a Decade of Pharmacogenomics at the US FDA, 11 PHARMACOGENOMICS 507, 511 (2010).


23. DEAN HAMER & PETER COPELAND, LIVING WITH OUR GENES: WHY THEY MATTER MORE THAN YOU THINK 303–04 (1998). The authors state, “[I]ndividual DNA sequences, combined with existing computer modeling techniques, would allow drugs to be as precise as a key in a lock.” Id.

24. See Goldstein et al., supra note 10, at 940 tbl.1a (providing examples of common drug targets and pathway proteins that are associated with drug response).

25. Id.


27. The Making of the Pharmacogenomic Prescription, GENE LETTER (Jan. 27, 2010), http://www.genel etter.com/the-making-of-the-pharmacogenomic-prescription-22/ (“[T]ests are performed to predict whether it will work in a particular patient prior to drug prescription.”).

care for that particular form of breast cancer. Pharmacogenomics is also currently used in Alzheimer’s disease research. For instance, one study investigated the relationship between Alzheimer’s patients’ genotypes and their response to certain already-existing drugs, and found that a certain gene is a good predictor of response to tacrine, a cholinesterase inhibitor.

The second promise of pharmacogenomics is the reduction of adverse drug reactions (ADRs). Fatal ADRs are considered to be between the fourth and sixth leading causes of death, accounting for approximately three percent of all deaths in the general population. Moreover, it is estimated that ADRs cost society over 100 billion dollars per year. Applying pharmacogenomics to drug development and prescription could potentially reduce the risk of adverse drug reactions such as venous thrombosis, which is associated with the factor V Leiden allele. Because the use of oral contraceptives by women with the factor V Leiden allele greatly increases the risk of venous thrombosis, it might be possible to test women for the allele before making prescription decisions. Likewise, would-be abacavir users for the treatment of HIV infection could be tested for the HLA-B*5701 allele, so as to reduce the incidence of hypersensitivity reactions to the use of the drug.

30. See Roses, supra note 2, at 860 (identifying gene mutations associated with Alzheimer’s disease).
32. Jason Lazarou et al., Incidence of Adverse Drug Reactions in Hospitalized Patients: A Meta-analysis of Prospective Studies, 279 JAMA 1200, 1202 (1998) (using data collected from 1994 to find that ADRs are responsible for 100,000 drug-related deaths and 2.2 million hospitalizations each year in the U.S.). See also Karin Wester et al., Incidence of Fatal Adverse Drug Reactions: A Population Based Study, 65 BRIT. J. CLINICAL PHARMACOLOGY 573, 576 (2008) (finding that fatal ADRs was the seventh most common cause of death in Sweden).
33. Wester et al., supra note 32, at 576.
36. Id.
37. Kathy L. Hudson, Genomics, Health Care, and Society, 365 NEW ENG. J. MED. 1033, 1036–37 tbl.2 (2011); Simon Mallal et al., Association Between Presence of HLA-B*5701, HLA-DR7, and HLA-DQ2 and Hypersensitivity to HIV-1 Reverse-Transcriptase Inhibitor Abacavir, 359 LANCASTER 727, 731
The study of genetics could also clarify why people respond differently to medications and how a person’s body metabolizes particular compounds. The manner by which an individual metabolizes certain drugs may depend on a set of genes separate and unrelated from those correlated to any particular illness that is present throughout the population. Simply put, certain genes have an impact on metabolic rates. Because of genetic variations in metabolism, pharmacogenomic discoveries may cause the drug prescription process to change. Instead of determining dosages by weight, age, and other proxies, physicians will be able to prescribe according to an individual’s genetic makeup, thereby “maximiz[ing] the therapy’s value and decreas[ing] the likelihood of overdose.”

For example, the D_2 receptor gene, DRD2, is associated with the metabolism of certain antipsychotics. Likewise, if an individual carries the variant cytochrome P450 gene, CYP2D6, which encodes a metabolic liver enzyme, he or she cannot metabolize certain compounds, which could therefore allow lethal amounts of a drug to accumulate in his or her body. It is claimed that “[u]p to 30% of patients do not respond optimally to certain drugs.” If an individual’s rate of metabolism is too high, a patient will be undertreated because the drugs will not be delivered in an efficacious manner. If metabolism is too low, it could lead to an overdose.

Wu, supra note 34, at 733. Other examples of prescribing particular dosages according to one’s metabolism in order to reduce adverse events include risk reduction strategies such as HIV resistance testing and optimized dosing for HCV. See Jianming Tang & Richard A. Kaslow, Pharmacogenomic Perspectives of Chronic Hepatitis C Virus (HCV) Infection, 4 PHARMACOGENOMICS J. 171, 172 (2004) (reviewing the use of pharmacogenomics to improve dosing for HCV treatment); The Making of the Pharmacogenomic Prescription, supra note 27 (discussing how pharmacogenomics is used for HIV resistance testing).


Greely, supra note 22, at 1.
because the site will be overdelivered. In other words, the ultra-rapid metabolism of a drug can cause it to be ineffective and slow, or non-metabolism of a drug can result in the accumulation of toxic amounts of the compound in the body.

Thus, physicians could modify an individual’s prescription according to multiple sets of genes and their interactions, in order to increase the probability of optimal dosage. According to Janet Woodcock, Director of the Food and Drug Administration’s (FDA) Center for Drug Evaluation and Research (CDER), the variability in how individuals metabolize compounds is “a huge problem, because what’s considered a normal dose of a drug can be toxic for some people.” She praises the advantages of using pharmacogenomics to determine dosages according to a patient’s genetic profile.

2. Diagnosis, Treatment, and Categorization of Disease

Further, pharmacogenomics promises that our knowledge of the biology underlying illness will increase through the identification of susceptibility genes, which might lead to a better understanding of gene products. This, in turn, will trigger greater awareness of the role of individual proteins in causing illness, thereby leading to further appreciation of the interaction of these proteins with other substances, as well as the effect of the environment on protein levels and function. These developments may result in new forms of diagnosis, treatment, and possibly prevention of many illnesses and disorders.

Although this article primarily focuses on the intersection of pharmacogenomics and the drug development process, diagnosis is another area in which genetic discoveries may have a significant impact. Currently, the process of diagnosis can be quite haphazard, and the trial-and-error method common in the experience of most physicians and patients can take its toll. Take, for instance,

47. Id.
48. See David Melzer et al., My Very Own Medicine: What Must I Know: Information Policy for Pharmacogenetics 53 (2003) (according to one study, 59 percent of drugs are “metabolised by at least one enzyme that has a variant allele known to cause poor metabolism”); see also Nuffield Council on Bioethics, supra note 14, at 88 (expressing concerns that doctors will group individuals by ethnicity and will refuse to prescribe medications just because they were found to be ineffective in others of the same ethnic group).
49. See Khaleeli & Fernandez, supra note 45, at 87–88 (finding that a goal of pharmacogenomics is to identify individual patients and ensure appropriate medication dosages).
51. Id.
53. Id.
54. Id.
bipolar disorder, a mental illness that affects 3.9 percent of the American population in their lifetime, with an average age-of-onset of 25 years. It is one of the most fatal of all illnesses, with a suicide rate of up to 20 percent. One survey found that although 26.2 percent of adults may have some sort of mental illness within a given year, only 12 percent receive minimally adequate treatment. This low rate of success is telling of the historical “needle-in-a-haystack” process of diagnosis. The isolation of genes that predispose certain individuals to particular illnesses will lead to an improvement in the understanding of the causes and mechanisms of the illnesses themselves. For example, mental health physicians began to see this improvement during the revisions of the Diagnostic and Statistical Manual of Mental Disorders (DSM-III) in the 1980’s, as the definitions shifted away from psychoanalytic assumptions toward a more standardized biology-based approach.

Moreover, the process of identifying the right dosage and combination of medications can be extraordinarily slow and discouraging, and it can take months, or even years, to determine the most effective treatment regimen for many diseases. For example, the Surgeon General’s Office reported that approximately 30 to 50 percent of patients diagnosed with major depressive episodes do not respond to their original medication. It has been argued that genetic discoveries will allow us to develop a “molecular taxonomy of disease,” or “a rational, aetiology-based classification of . . . disorders which will almost certainly provide a much better guide to treatment and prognosis than do current classifications.”

59. Nicholas J. Schork, Genetics of Complex Disease: Approaches, Problems, and Solutions, 156 Am. J. Respiratory & Critical Care Med. S103, S105 (Supp. 1997) (describing that the study of genetics could lead to investigations into: “(1) the frequency of the deleterious gene in the population, (2) the effect of the gene in the presence of other factors . . . [and] (3) the impact of public health and health economics of the gene if its effects were ameliorated”).
64. Craddock & Jones, supra note 52, at 592.
Indeed, the discovery of genes that confer vulnerability to an illness could establish multiple and distinct biological causes for the same symptoms, thus creating new categories of an overarching illness. These subcategories could have diverse molecular and environmental causes, while being manifested in similar physical or behavioral symptoms. Thus, in the future, diagnosis could be categorized by the individual’s biological interactions or one’s predetermined reactions to certain medications. For example, the current categories of cancer—based on location and type of tumor—may become obsolete, as the understanding of the molecular biology of illness improves.

B. The Complexity of Pharmacogenomics

An important disclaimer is necessary: pharmacogenomics is not as simple as analyzing one’s genetic makeup to make drug dosage and prescription decisions. Pharmacogenomics does not promise perfectly individualized medicine; it will only accelerate the process of tailoring treatment decisions to one’s genetic predispositions. As researchers have focused on the probabilistic nature of genetics, it is becoming clearer that the most common illnesses, if genetic, are compounded by drug interactions and environmental and physiological factors such as nutrition, aging, and liver and kidney function.

65. Many believe that “it is likely that some conditions which are now considered to be single disorders, with a common set of symptoms, will be discovered to be more heterogeneous, with several different biochemical disorders leading to a common set of clinical features.” NUSSFIELD COUNCIL ON BIOETHICS, supra note 14, at xviii.

66. See generally id.


69. See MELZER ET AL., supra note 48, at 53; see also Pat Buckley & Ross A. McKinnon, Pharmacogenomics, Ethics, and the Community, 23 PHARMACIST 23, 23 (2004) (“The probabilistic nature of pharmacogenomics needs to be appreciated when considering whether its application will increase inequalities in the provision of health care. Pharmacogenomic tests are unlikely to indicate that a particular medicine will definitely be effective or ineffective in a particular patient. Rather, they are likely to provide probabilistic information . . . .”). The FDA guidance to industry regarding the submission of pharmacogenomic data is clear on the interaction between genes, the environment, and other assorted factors, stating, “[i]n most instances, a genotype or particular gene expression profile is likely to be one of a number of factors that affects the probability of an adverse event or a favorable response. For this reason, pharmacogenomic biomarkers can ordinarily be handled like other non-genomic predictive markers in the clinical arena.” FOOD & DRUG ADMIN., U.S. DEP’T OF HEALTH & HUMAN SERVS., GUIDANCE FOR INDUSTRY: PHARMACOGENOMIC DATA SUBMISSIONS 16 (2005) [hereinafter 2005 FDA GUIDANCE]. See also Marshall, supra note 9, at 7 (“More often than not, several genes, rather than one, interact with environmental factors to result in a particular variation in drug action.”).
pharmacogenomics is likely much more complicated than some members of the media and public hope and claim.\(^70\)

The ultimate promise of effective, personalized, tailor-made medicine, with fewer side effects and more appropriate dosage, is tantalizing. However, there are a number of issues that must be considered to proactively approach and anticipate potential innovations and their implications rather than “trying to implement retroactive changes.”\(^71\)

Many of the problems encountered when considering the impact of pharmacogenomics on society are multilayered and complex, and involve a myriad of ethical, legal, and policy-related considerations. This article focuses on the role of industry in furthering pharmacogenomic developments and the dimensions of current regulatory and legislative decision-making in the discipline.\(^72\) The discussion of the impact of pharmacogenomics would be incomplete without addressing how theories of liability may change, or be changed, by pharmacogenomic developments.\(^73\)

II. PHARMACOGENOMIC DRUG RESEARCH AND DEVELOPMENT

A. Industry Reluctance to Pursue Pharmacogenomics

Pharmaceutical companies may be reluctant to use pharmacogenomics to develop potentially beneficial drugs and therapies because of the limited financial benefit associated with drug development for smaller stratified patient populations. These companies may be hesitant to pursue pharmacogenomics at all due to its inherently unprofitability.\(^74\) Some critics assert that companies that sell the most products that are ineffective for many consumers/patients have the least incentive to do research to identify more effective drugs that will draw market share away from their one-size-fits-all drugs.\(^75\) Companies with successful blockbuster drugs may be cautious about pursuing pharmacogenomic research because alternative drugs may only benefit a small portion of the population.\(^76\)

\(^70\) For example, one commentator, in a critique of the Nuffield Council on Bioethics’ report on pharmacogenetics, concluded that “expert opinion is less optimistic as the complexities of gene/gene, and gene/environment interaction have become more apparent.” Onaogh Patricia Corrigan, Pharmacogenetics, Ethical Issues: Review of the Nuffield Council on Bioethics Report, 31 J. Med. Ethics 144, 146 (2005).


\(^72\) See infra Parts II–III.

\(^73\) See infra Part III.C.


\(^75\) Barbara J. Evans et al., Creating Incentives for Genomics Research to Improve Targeting of Therapies, 10 Nature Med. 1289, 1291 (2004).

\(^76\) See Peterson-Iyer, supra note 74, at 39; see also Pharmacogenomics: Medicine and the New Genetics, H uman Genome Project Info.,
Incentivizing the Utilization of Pharmacogenomics could lead to market segmentation by increasing research and development (R&D) costs without raising profits. Income estimates for smaller, targeted patient markets run 300 to 500 million dollars rather than the one billion dollars generally associated with blockbuster drugs. Thus, companies may bypass the use of pharmacogenomics to develop potentially beneficial drugs and therapies because of the perceived limited financial benefit.

However, if a rival company manufactures a drug that is obviously more effective than the current blockbuster drug, people may stop buying the ineffective one, thereby forcing sponsors of big-name drugs to focus on targeted drug development in order to compete in the market. In other words, differentiating drugs according to effectiveness in subpopulations may lead to increased competition among companies.

Even as it might fight it, industry is anticipating change, admitting that “[t]he era of the blockbuster is ending.” However, it is unclear how “the drug industry will metamorphose itself.” In fact, the configuration of the industry may shift so much that Robert Freeman, the former Executive Director of Public Policy at AstraZeneca, acknowledged, “[w]e simply don’t know what kind of business model is necessary to commercialize personalized medicine.” Some pharmaceutical companies have actively begun pursuing pharmacogenomic research. For example, GlaxoSmithKline “has played a prominent role in


77. Corrigan, supra note 70, at 145.
78. Wu, supra note 34, at 743.
79. NUSSFELD COUNCIL ON BIOETHICS, supra note 14, at 29.
80. Commentators have noted big pharmaceutical companies’ reluctance to enter the pharmacogenomics market, but have conceded that although “[i]ncreased attention to cost effectiveness tends to reward well-targeted therapies for their low rates of treatment failure . . . drugs need only outperform a standard or reference drug, which could itself be poorly targeted.” Evans et al., supra note 75, at 1290.
82. Sherrid, supra note 81.
83. Id.
84. Amber L. Beitelshes & David L. Veenstra, Evolving Research and Stakeholder Perspectives on Pharmacogenomics, 306 JAMA 1252, 1252 (2011) (citing recent studies including one by GlaxoSmithKline investigators, which “has identified major histocompatibility complex genetic variants associated with liver damage in response to lapatinib, which is already Food and Drug Administration (FDA) approved for the treatment of breast cancer,” another in which the “epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors erlotinib and gefitinib recently [was] shown to be more effective in patients with non–small cell lung cancer (NSCLC) who have certain EGFR tumor mutations,” and a third by Pfizer to develop a drug “(crizotinib) for NSCLC, which is projected to be indicated for 3% to 5% of patients with an EML4-ALK fusion gene variation”). By 1998, three major
promoting pharmacogenetics, with company scientists producing a number of scientific papers in high profile science and medical journals urging the uptake of pharmacogenetics.”

B. Advantages of Using Pharmacogenomics in Drug Development

1. Potential Cost-Saving Measures

Drug R&D is expensive and relatively haphazard. In 2010, industry spent an estimated 67.4 billion dollars on pharmaceutical R&D. The Pharmaceutical Research and Manufacturers of America (PhRMA), the pharmaceutical trade association, estimates the average cost to develop a drug at 1.3 billion dollars. It currently takes an average of ten to fifteen years for a company to develop a drug. Since most drugs do not make it to market, the profits from one product must make up for the losses incurred for failed compounds.

Furthermore, only one of “60,000 compounds synthesized by pharmaceutical companies” can be considered “highly successful.” Success is currently measured by the amount earned; “highly successful” blockbuster drugs have annual global sales over one billion dollars.

A study by the Boston Consulting Group asserts that companies that are hesitant to enter the “genomics revolution head on” will suffer the consequences, rendering them unable to compete in the market with those that do. According to one estimate, the incorporation of pharmacogenomics into drug development could

companies–Genset, Celera Genomics, and Incyte Genetics–had already begun preparations to undertake systematic searches of the genome for variants or single-nucleotide polymorphisms (SNPs), and a number of other companies had been created in order to develop molecular diagnostics. Jeanette J. McCarthy & Rolf Hilfiker, The Use of Single-Nucleotide Polymorphism Maps in Pharmacogenomics, 18 NATURE BIOTECH. 505, 505 (2000).

85. Corrigan, supra note 70, at 145.
87. Id. This estimate is highly contentious. See, e.g., Donald W. Light & Rebecca Warburton, Demythologizing the High Cost of Pharmaceutical Research, 6 BIOSOCIETIES 34, 36, 38–39 (2011) (critiquing the high costs associated research and development of new drugs).
88. PHARM. RESEARCH & MFRS. OF AM, supra note 86, at 12 fig.4.
89. “Only about one in six drug candidates that enter clinical trials are ultimately submitted to and approved by the FDA, according to a study of the 50 largest companies.” Id. at 10.
lead to a reduction in the cost and time of drug development, saving up to 45 percent of clinical drug development costs.93

Pharmacogenomics can be applied at every phase in the drug development process, and companies may be able to save substantial R&D costs and speed up the drug approval process because of the ability to reduce the population in which the drug is tested, leading to more reliable findings, ostensibly faster institutional review board (IRB) review and approval, and safer trials.94 Individuals for whom the drug in question is less likely to be effective, or those for whom the drug may have deleterious side effects, can be excluded from the various stages of clinical trials, thereby improving the protection of participants in human research.95 Moreover, the “selection of smaller groups of genetically homogenous participants in clinical trials may be advantageous, leading to more robust and reliable scientific findings regarding the group of patients who might eventually be prescribed the medicine.”96

Reducing the failure rate could “far outweigh the negatives of market segmentation,” according to Nicholas Dracopoli, the former Vice President of Clinical Discovery Technologies at Bristol-Myers Squibb.97 A drug guaranteed to work on the percentage of the population “for whom other drugs are ineffective or cause harmful side effects will return steady revenue at a premium price”—resulting in the development of reliable “mini-busters.”98 Currently, blockbusters are the biggest source of revenue for many drug companies, but “mini-busters”

93. Reeder & Dickson, supra note 90, at 231 (estimating 45 percent savings of clinical drug development costs). Another group estimates the cost of developing a new medicine to be reduced to about 60 percent of the cost. TOLLMAN ET AL., supra note 92, at 12 (estimating a savings of 300 million dollars from an average 880 million dollars in costs).

94. Marshall, supra note 31, at 12 (asserting several rewards of pharmacogenomics such as quicker development and increased financial pay-offs for pharmaceutical companies). Goldstein et al., states:

One motivation for pharmacogenetic testing during drug development is that the stratification of patients by genotype might allow the identification of responses that would have been missed in an unselected cohort. This could allow efficacy for subgroups to be shown in drugs that might not have been considered effective in general populations, which could potentially improve the success rate of compounds. Because of the huge costs per patient of clinical trials, it has also been suggested that such streamlining might reduce the average cost of developing new compounds.

Goldstein et al., supra note 10, at 945.

95. NUFFIELD COUNCIL ON BIOETHICS, supra note 14, at xiv.

96. Id.

97. Sherrid, supra note 81.

98. Lagay, supra note 34 (asserting that such drugs will return a steady revenue at a premium price); Evans et al., supra note 75, at 1289 (asserting that tailored treatments could generate new avenues for income); Catherine Schaffer, Pfizer Explores Rare Disease Path, 28 NATURE BIOTECH. 881, 881 (2010) (defining “mini-busters” as drugs which treat a small population by pharma standards, but can be charged at a premium due to the demand).
could replace the blockbusters with new, more genome-specific drugs.99 For example, pharmacogenomic discoveries “threaten[,] to shake up the lucrative 26 billion dollar market for Statins—the big-selling products that help lower cholesterol in the blood and reduce the risk of heart attacks and strokes.”100

However, the view that pharmacogenomics will lead to more efficacious, reliable, and safe clinical trials because of more targeted trial studies is not without its detractors.101 For example, some believe that “the small size of pharmacogenetics studies renders them unconvincing.”102 In addition, the restricted trial populations will limit the claims a company can make on a drug to the FDA.103 This may affect the licenses FDA may grant, because approval will only be related to the particular population in the pivotal trials.104 The restriction of FDA approval to specific patient groups could implicate a significant problem already plaguing FDA, that of off-label prescription.105

2. Saving Shelved Drugs

Pharmacogenomics may also enable the re-marketing of “shelved” drugs that are rarely, if ever, prescribed because of an inability to determine for whom the drugs work or because they cause adverse reactions in some patients.106 Between January 1, 1971 and May 31, 2006, over three percent of drugs approved by FDA were withdrawn due to unacceptable side effects.107 Genetic tests may be able to revive such drugs that were withdrawn from the market.108 The identification of a

99. See Javier Barrios-González & Roxana U. Miranda, Biotechnological Production and Application of Statins, 85 APPLIED MICROBIOLOGY & BIOTECH. 869, 869 (2010) (stating that the two highest selling drugs in the United States in 2006 were statins).
100. Genes Play Role In Who Benefits From Statin—In Boost to ‘Personalize Medicine,’ Study Links Patient Genetics with Efficacy of Cholesterol Drug, WALL ST. J., June 16, 2004, at D1. In one study, “[p]atients with a certain common genetic variant had a 22% smaller drop in total cholesterol and a 19% smaller drop in LDL or ‘bad’ cholesterol than those patients without the variant.” Id.
101. See MELZER ET AL., supra note 48, at 33 (questioning the generalizability of pharmacogenomics in pre-licensing drug trials).
102. Id.
103. Id. at 34–35 (assessing the issues created by a smaller target population in detecting unusual adverse events).
104. See id. (detailing the uncertainty surrounding the regulatory guidelines for pharmacogenetic products).
105. See infra Part III.A.2.b.
108. Meuer, supra note 2, at 401. One commentator highlighted the anti-epileptic drug felbamate in order to clarify the use of pharmacogenomics to reduce ADRs. Goldstein et al., supra note 10, at 945. The drug was approved in 1993, after it was demonstrated that it helped control seizures. Id. During a clinical investigation, there was no evidence of clinically significant blood or liver disorders related to use of the drug. Id. However, 34 cases of aplastic anemia and 23 cases of hepatic failure, with 18 reported fatalities, were reported in the first year after licensing. Id. It is believed that these ADRs and associated deaths were related to the metabolism of the drug. Id. The authors contend that “[t]he ability
“unique population . . . that benefits from a drug that once experienced lagging sales because of its ineffectiveness in the larger overall population” could mean that “the postmarketing use of pharmacogenomic data may be quite useful to a drug company.”

Moreover, like those products that were shelved after FDA approval, drugs that had not made it through the approval process or were abandoned during development may also be given a second chance. Companies may take advantage of “Lazarus” programs in which drugs that have failed to receive FDA approval due to high rates of ADRs or low efficacy can be “resurrected and used to treat genetically selected responders.” Thus, “[p]reviously failed drug candidates may be revived as they are matched with the niche population they serve.” In particular, drugs in Phase III trials may be “rescued” due to a new ability to reduce the rate of toxicity or adverse events in the identified testing population. It has been predicted that although the big pharmaceutical companies may continue to abandon these drugs (“why try to rescue a failed compound when pipelines are overflowing with leads?”), such drugs may present desirable opportunities for smaller biotech companies who choose to pursue licensing.

3. Avoiding Scandal (and Harm to Patients)

Companies may also be able to avoid scandals like that associated with the antiarthritic drug Vioxx. In 2004, Merck & Co. initiated the biggest voluntary drug recall in history due to evidence that Vioxx raises the risk of heart attack and stroke. The recall incensed FDA critics, who have accused the FDA of lacking aggressiveness and “foot-dragging” once a drug has entered the market. Agency to reliably predict which patients might be at risk of such reactions to felbamate might allow greater confidence in its use, and again make available a potentially valuable AED [anti-epileptic drug] for patients with epilepsy that can itself be life-threatening.” This example is illustrative of the optimism many have for FDA-approved drugs that have been shelved due to adverse reactions. The authors claim that the economic incentives for “unshelving” the drug could be well worth it, explaining that “[i]f pharmacogenetic predictors of adverse events could prevent the exposure of genetically vulnerable patients and so preserve even a single drug, the costs of any large-scale research effort in pharmacogenetics could be fully recovered.”

110. Andrew Marshall, One Drug Does Not Fit All, 16 NATURE BIOTECH. 1, 1 (Supp. 1998) (discussing “Lazarus” programs in which products that had been shelved after not making it through the approval process).
111. Id. 112. HUMAN GENOME PROJECT INFO, supra note 78.
113. MELZER ET AL., supra note 48, at 31.
116. Id.
response to the Vioxx debacle has included a focus on pharmacogenomics. Steven Galson, then-Acting Director of CDER, said that, among other things, FDA would “promot[e] research on pharmacogenetics to help identify people who might react adversely to drugs.”

Thus, with an increase in pharmacogenomic research, drugs companies like Merck may be less likely to lose money late in trials due to safety and efficacy problems (even after FDA has already approved the drug), and will therefore be able to avoid withdrawing a drug from the market and the concomitant negative press and profit loss.

C. The Public and Private Sectors: Shifts and Collaborations

Identifying resources for R&D is of primary significance to encouraging pharmacogenomic advancement. Generally, “[f]ederal subsidies and public sector research . . . play significant roles stimulating the development of the first generation of genetic tests designed to customize drug therapy.”

Going forward, pharmacogenomics will continue to require public sector funding to encourage the private sector to develop tests for existing drugs. It may be necessary to either incentivize private sponsorship of drug development, or the government will need to provide greater federal subsidies. In particular, alternative sources of funding may be most needed where genetic tests “are not widely adopted, when tests are designed for use with substitute drugs manufactured by different companies, or when the private cost of test development is high because of licensing costs.”

117. Id.
118. Evans et al., supra note 75, at 1289.
119. Meurer, supra note 2, at 401, 425 (“Thus far, public sector funding and R&D have been critical to the creation and deployment of pharmacogenomic innovations.”).
120. Id. at 401, 425–26 (suggesting that funding from the public sector will further the goals of pharmacogenomics).
121. A Pharmaceutical Research and Manufacturers of America (“PhRMA”) report explained: [A]ccording to the National Institutes of Health (NIH), public dollars are not funding the research leading to new medicines. In fact, only 4 of the 47 top-selling drugs considered by NIH in its study to determine if American public investments were funding new drug development were developed in part with NIH funding, and none [were] developed solely with public funds.


122. Meurer, supra note 2, at 425–26. Meurer concludes by recommending a number of options for the type of public subsidies that should be offered, stating: Presently, federal grants directly support public sector pharmacogenomic research, and indirectly support pharmacogenomics through subsidies encouraging the production of research inputs (like gene data) that are used in the development of genetic tests. The government can encourage adoption of genetic tests through drug law and health insurance regulation. Finally, the drug laws may be used to subsidize the development of drugs designed to treat “orphan genotypes.”

Id. at 426.
However, data supports the conclusion that some R&D support for pharmacogenomics must shift from the public to the private sector. Critics argue that economic considerations could lead to a differentiation between the research focus in the industrial and academic sectors. They recommend that the appropriate regulatory mechanisms ensure cooperation between sectors to facilitate the transfer of information and the development of pharmacogenomic technology. There are a few public-private collaborations already underway. The SNP Consortium, a non-profit foundation, was founded to provide public genomic data online, thereby facilitating genomic research. Pharmaceutical and technology companies, academic research centers, and the Wellcome Trust have entered into a partnership “to publish a high-density SNP map of the human genome.” The database of over 3.1 million SNPs is maintained by Cold Spring Harbor Laboratory.

There have also been a number of agreements between pharmaceutical and biotech companies. A 2003 survey indicated an interest in pharmacogenomic collaborations by both small biotech companies that are generally involved in providing test kits and other technological innovation, and large pharmaceutical companies. In 1997, two other collaborations between companies involved a 25 million dollar deal between Incyte Genomics and GlaxoSmithKline to form diaDEXUS, and a 42.5 million dollar agreement between Genset and Abbott to

123. See id. at 425 (“If pharmacogenomics fulfills its promise, then we should expect that, as this sector of the pharmaceutical industry matures, most of the R&D on genetic tests will shift to the private sector.”); see also Beitelshes & Veenstra, supra note 84, at 1252 (“The pharmaceutical industry is increasingly using pharmacogenomic strategies to identify patient subgroups with improved benefit-risk profiles.”).

124. Goldstein et al., supra note 10, at 945.

125. Likewise, the Nuffield Council on Bioethics recommends that public-private partnerships be encouraged. NUFFIELD COUNCIL ON BIOETHICS, supra note 14, at xiv.


127. Id. at S22.


130. See, e.g., Corrigan, supra note 70, at 145 (providing the example of a 20 million dollar alliance between the biotech company Genset and the pharmaceutical company Abbott Laboratories “to analyze variations in patient responses to particular drug therapies”).

develop pharmacogenomics tests for gauging drug response. In 1998, deCODE Genetics and Roche entered into a 200 million dollar agreement “to identify disease genes through genetic analysis of the uniquely homogenous Icelandic population.” Pharmaceutical companies have also been encouraged to enter into agreements with biotech companies to develop test-drug combinations. Such arrangements are financially desirable because “[w]here tests and drugs are intimately linked, as is in the case of new pharmacogenetic products, their evaluation needs to be co-ordinated and any licensing approval issued in concert” rather than separately.

Even if smaller companies do not enter into collaborations with “big pharma,” the “existence of ’niche’ therapeutic categories will present opportunities for smaller, genetics-based biotechnology firms to enter the market and produce the drugs.” It has been hypothesized that the pharmaceutical industry may bifurcate into two separate sectors: those big pharmaceutical companies that will continue to pursue “blockbuster” drugs for “high-prevalence polymorphisms” and a “second ‘cottage’ sector that serves the ‘orphan drug’ market.”

It will be interesting to see how the pharmaceutical industry adapts and changes with pharmacogenomic advances. The industry has been “in a consolidation and merger phase, with ever larger corporations emerging at a steady pace.” Since blockbuster drugs may no longer be the preferred treatment, companies may hone in on “mini-busters,” thereby decreasing their size and the way they work with one another.


133. Id. at 128. deCODE Genetics is an Icelandic company that endeavored to set up an Icelandic Health Sector Database (HSD) containing the medical records and genealogical and genetic data of all Icelanders. David E. Winickoff, Genome and Nation: Iceland’s Health Sector Database and its Legacy, INNOVATIONS, 80, 80–81 (2006).

134. Companies have “jumped on the technology, many of them merging with biotech companies that suddenly see a profitable product in the near future for the first time.” Lagay, supra note 35.

135. MELZER ET AL., supra note 48, at 40. Herceptin is one example of a linked test-drug combination, as it requires administration of a test before it can be prescribed. However, “[t]he test is not a true pharmacogenetic test, because it measures protein expression in a tumor rather than the underlying genetic makeup of the patient, but it shows the power of such tests.” Henry, supra note 128.

136. Reeder & Dickson, supra note 90, at 233.

137. Id.


139. See id. (explaining that the “one drug fits all” approach could evolve into more individualized efforts, although this may not be a realistic goal); Bryn Williams-Jones & Oonagh Patricia Corrigan, Rhetoric and Hype: Where’s the ‘Ethics’ in Pharmacogenomics?, 3 AM. J. PHARMACOGENOMICS 375, 379 (2003).
III. REGULATORY AND LEGAL ISSUES

The utilization of pharmacogenomics in drug development has repercussions for diverse areas of the law. This section considers the FDA guidance on pharmacogenomic data submission as well as other FDA measures taken to ensure the safety and efficacy of pharmacogenomic advancements. The impact of the Orphan Drug Act (ODA) is explored in light of the creation of drug compounds for small targeted populations. This article concludes with a consideration of legal liability for both physicians and the pharmaceutical industry.

A. The FDA

Pharmacogenomics introduces new complexities to the already complicated system of drug development and approval, and it has been argued that pharmacogenomics will lead to a “major, technology-driven restructuring” which would require “bold leadership from relevant regulatory agencies worldwide.” The FDA encourages the incorporation of pharmacogenomics into the drug development process, and currently the agency has approved 114 drugs with pharmacogenomic information in their labels.

The Food, Drug, and Cosmetic Act (FDCA) authorizes the FDA to ensure that human and animal drugs, biological products, and therapeutic devices are safe and effective. The drug amendment to the FDCA of 1962 authorized the FDA to take a more preemptive approach to drug development, requiring premarket approval for every new drug. Thus, a new drug application (NDA) will only be approved once the Center for Drug Evaluation and Research (CDER), which is responsible for approving NDAs, is convinced of the drug’s safety and

140. See infra Part III.A.
141. See infra Part III.B.
142. See infra Part III.C.
143. Evans et al., supra note 75, at 1290.
144. Table of Pharmacogenomic Biomarkers in Drug Labels, FOOD & DRUG ADMIN, http://www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/ucm083378.htm (last updated Feb. 29, 2012). However, critics have noted that the current labeling process may be inadequate, as the information provided on the labels “is probably of limited use to most physicians and patients” because it does not contain “clear and comprehensive drug labeling that informs about genetic tests relevant to the safety or efficacy of use is critical to enhancing patient care.” Hudson, supra note 37, at 1036.
146. The FDA’s mission is to “protect public health . . . by helping to speed innovations that make medicines more effective, safer, and more affordable.” What We Do, FOOD & DRUG ADMIN, http://www.fda.gov/aboutfda/whatwedo/default.htm (last visited Apr. 12, 2012).
effectiveness. In order to demonstrate safety and efficacy, drug companies spend millions of dollars and many years enrolling individuals in a series of clinical trials to generate the necessary data. The Office of Clinical Pharmacology in CDER is charged with reviewing biopharmaceutic, pharmacokinetic, and pharmacodynamic data in Investigational New Drug (IND) applications and NDAs. After the pioneer drug’s patent has expired, FDA can approve abbreviated new drug applications (ANDAs), for which a generic drug sponsor may establish that the drug is a bioequivalent to the original product.

In general, the FDA has taken a wait and see approach to regulating new technologies. In the late 1990’s, in response to developments in pharmacogenomics, the FDA indicated that it planned to maintain the “drug approval process as it currently exists,” explaining that there is “no problem with the promise of pharmacogenomics,” and that they were waiting for “data to evaluate the results.” As of 1998, the FDA still had no plans to focus any guidance solely on pharmacogenomics. Moreover, the FDA and other agencies thought it unlikely that pharmacogenomic information would be required for all drugs.

1. Voluntary Genomic Data Submissions

Only five years later, in November, 2003, the FDA released its draft guidance to industry regarding the submission of pharmacogenomic data to the agency.


149. See, e.g., Thomas Bodenheimer, Uneasy Alliance: Clinical Investigators and the Pharmaceutical Industry, 342 NEW ENG. J. MED. 1539, 1539 (explaining that the FDA mandates that manufacturers demonstrate their products meet efficacy and safety tests, and the entire process can range from 300 million to 600 million dollars).


151. Abbreviated New Drug Application (ANDA): Generics, FOOD & DRUG ADMIN, http://www.fda.gov/drugs/developmentapprovalprocess/howdrugsaredevelopedandapproved/approvalapplications/abbreviatednewdrugapplicationandgenerics/default.htm (last updated Jan. 3, 2012). One author has maintained that pharmacogenomics will facilitate the way generic drugs are approved. Lars Noah, The Coming Pharmacogenomics Revolution: Tailoring Drugs to Fit Patients’ Genetic Profiles, 43 JURIMETRICS 1, 18 (2002) (“Pharmacogenomic information could, therefore, provide a better basis for making comparative judgments about bioavailability and facilitate the approval and use of generic drugs in the future.”).

152. Binzak, supra note 71, at 105.


154. Id. at 243.

155. FOOD & DRUG ADMIN., DEPT. OF HEALTH & HUMAN SERVS., DRAFT GUIDANCE FOR INDUSTRY ON PHARMACOGENOMIC DATA SUBMISSIONS (2003) [hereinafter FDA DRAFT GUIDANCE].
Lawrence Lesko, the former Director of the Office of Clinical Pharmacology, stated that the agency has been atypically proactive in issuing its guidance.\textsuperscript{156}

Although industry often prefers a hands-off approach, the private sector sought guidance from the FDA regarding the use of pharmacogenomics in its R&D.\textsuperscript{157} Stephen Friend, a Senior Vice President at Merck, explained that both patients and pharmaceutical companies need “ground rules because the correct use of this data . . . is going to be critical for it to be of benefit.”\textsuperscript{158} In response, the FDA encouraged drug companies to conduct pharmacogenomic tests during drug development and to submit resulting data to the FDA, while maintaining an appropriate level of safety and efficacy for consumers.\textsuperscript{159} The draft guidance was considered quite “pro-pharmacogenomics,” and the FDA stated that the nonbinding recommendations were intended to “facilitate,” and “not impede, the use of pharmacogenomic tests during drug development.”\textsuperscript{160} In discussing the draft guidance, then-FDA Commissioner Mark B. McClellan explained that it was:

[I]ntended to ensure that evolving regulatory policies and study designs are based on the best science; provide public confidence in this new field where scientifically appropriate; facilitate the use of such tests during drug development; and clarify for industry what types of pharmacogenomic data to submit to FDA.\textsuperscript{161}

The guidance sought to remedy pharmaceutical sponsors’ hesitancy in using pharmacogenomic technologies in drug development by clarifying how the FDA will use and interpret in the drug application review process.\textsuperscript{162}

\begin{flushright}
\end{flushright}

\begin{flushright}
\textsuperscript{157} Anna Wilde Mathews, FDA Will Issue Rules on New Era of ‘Personalized Medicine’, WALL ST. J., Nov. 3, 2003, at B1 (“Major drug companies are likely to welcome a firm signal from the FDA that will reduce the questions surrounding the new field. They are also likely to applaud the agency’s promise that voluntarily submitted information won’t be used in decisions about drug approvals.”).
\end{flushright}

\begin{flushright}
\textsuperscript{158} Id.
\end{flushright}

\begin{flushright}
\textsuperscript{159} See FDA DRAFT GUIDANCE, supra note 155 (“The draft guidance is intended to facilitate scientific progress in the area of pharmacogenomics, which should enable the FDA to use pharmacogenomic data in regulatory policies and decision making.”); see also Hampton, supra note 50.
\end{flushright}

\begin{flushright}
\end{flushright}

\begin{flushright}
\textsuperscript{161} Frank S. Zollmann, FDA Issues Guidance on Pharmacogenomics Data, HUM-MOLGEN (Nov. 5, 2003, 16:28), http://hum-molgen.org/NewsGen/11-2003/000015.html. The draft guidelines were intended to balance the thin line between: “(a) accepting correlative data on genotype and drug response . . . and (b) ensuring that the first experiences evaluating this data will not act as a disincentive for drug companies embarking on existing and future drug research and development programs.” Shah, supra note 16, at 5.
\end{flushright}

\begin{flushright}
\textsuperscript{162} Zollmann, supra note 161.
\end{flushright}
In March 2005, the FDA issued its final guidance, which did not vary significantly from the draft version. The fact that the final guidance had been so delayed led to some skepticism among those that it affects. In late 2004, Lesko denied that the wait for the final draft was due to a “big, big problem,” and attributed the delay to the 2004 political elections, which impeded the collaboration necessary to issue the final guidance. He also explained that the guidance had been postponed because it would be released with companion documents, including a “roadmap for the voluntary submission process.”

The guidance provides a number of examples of places in which the field of pharmacogenomics has yet to be established or generally accepted by the scientific community. The guidance is therefore intended to motivate the pharmaceutical industry to pursue pharmacogenomic R&D, allowing industry and the FDA to become comfortable with novel pharmacogenomic approaches as they develop and to establish consensus around pharmacogenomics standards and policies.

The FDA’s guidance also provides a “safe harbor,” which asks companies to voluntarily submit their pharmacogenomic data (“voluntary exploratory data submissions” or VXDSs), in return for the assurance that the agency will not make premature regulatory decisions based on these submissions. This assurance was a reaction to companies’ concerns that data would be used against them to keep their products off the market or to “limit [their] approval to a small subpopulation of

---

163. Press Release, Food & Drug Admin., FDA Works to Speed the Advent of New, More Effective Personalized Medicine (Mar. 22, 2005). Although there is little obvious difference between the draft and final guidance, the final version did attempt to resolve ambiguities in the draft version. See Food & Drug Admin., U.S. Dep’t. of Health & Human Servs., Guidance for Industry: Pharmacogenomic Data Submissions—Companion Guidance (2007) (clarifying voluntary genomic data submissions). In 2007, FDA released companion guidance to the 2005 guidance. Id. The addendum includes recommendations on gene expression data from microarrays, genotyping, genomic data in clinical study reports, genomic data from nonclinical toxicology studies, and data submission formats. Id.


165. Lesko Keynote Address, supra note 156.

166. Id.


168. See 2005 FDA Guidance, supra note 69, at 3–4 (explaining the scientific uncertainty of pharmacogenomic test results which make regulatory decision-making difficult, such as probable or known valid biomarkers, as well as other less well-developed tests that are “insufficient for making regulatory decisions”).


170. Federico M. Goodsaid et al., Voluntary Exploratory Data Submissions to the US FDA and the EMA: Experience and Impact, 9 Nature Revs. Drug Discovery 435, 435 (2010). VXDSs were formerly referred to as “voluntary genomic data submissions” or VGDSs. Id.
patients.” The FDA’s policy is aimed at encouraging drug companies to share pharmacogenomic results without fear of the FDA demanding more research. The agency plans to use submitted pharmacogenomic information to “gain a better understanding of the field.”

The Institutional Pharmacogenomics Review Group (IPRG) was created by the FDA to set a scientific and regulatory framework for reviewing VXDSs. If it is unclear whether a submission is voluntary or mandatory, the IPRG is responsible for convening a meeting with the sponsor and representative(s) from the relevant review division to help determine the status of the submission in question. The IPRG reviews voluntary data submissions and also, upon request, consults with FDA review staff regarding genomic data submissions that are required (per the relevant regulations) to be submitted to, or as part of, an existing application that will be used during the regulatory process.

The FDA guidance clarifies how submitted data will be utilized in regulatory decision-making, setting out three classifications of biomarkers: exploratory, probable valid, and known valid biomarkers. What differentiates the categories is “their validity or degree of validity,” or “their degree of uncertainty.” Lesko

171. Hampton, supra note 50, at 32. The FDA lists the following as advantages of voluntarily submitting pharmacogenomic data, including the opportunities for industry to: (1) have informal meeting with FDA pharmacogenomics experts; (2) “[r]eceive and benefit from informal peer-review feedback” on pharmacogenomics issues and/or questions; (3) “[g]ain insight into current FDA thinking” about pharmacogenomics that may assist in reach strategic decisions; and (4) familiarize FDA with pharmacogenomics experiments, data analysis and interpretation approaches. Genomics: Frequently Asked Questions, FOOD & DRUG ADMIN, http://www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/ucm083893.htm (last visited April 13, 2012).

172. See Mathews, supra note 157 (noting that the FDA may ask “companies to voluntarily submit more general research in pharmacogenomics”); see also Richard Fisler, Biomarkers in Clinical Development: Implications for Personalized Medicine and Streamlining R&D, ADVANCES LIFE SCIENCES REPORT 16 (2005) (explaining that many companies fear a delay in approval of their product due to FDA questioning).

173. Such knowledge is “important, because there’s a lot of uncertainty about the significance of data in these areas,” according to the director of regulatory affairs of a large pharmaceutical company. Mathews, supra note 157.


175. CTR. FOR DRUG EVALUATION & RESEARCH, FOOD & DRUG ADMIN., MANUAL OF POLICIES AND PROCEDURES: MANAGEMENT OF THE INTERDISCIPLINARY PHARMACOGENOMICS REVIEW GROUP (IPRG) 1–3 (2005) [hereinafter MANUAL OF POLICIES AND PROCEDURES].

176. Id. at 2–3

177. 2005 FDA GUIDANCE, supra note 69, at 4 (explaining “when the data will be considered sufficiently reliable to serve as the basis for regulatory decision making; when it will be considered only supportive to a decision; and when the data will not be used in regulatory decision making.”).

178. Lesko Keynote Address, supra note 156. See 2005 FDA GUIDANCE, supra note 69, at 4 (distinguishing between known valid biomarkers, which are accepted in the broad scientific community,
explained that “the function is driven by the classification, and then the function in turn drives the submission process, whether it is voluntary or required and whether it is a full report, abbreviated or synopsis.”\textsuperscript{179} The guidance informs drug sponsors on when and how to submit pharmacogenomic data “during the drug or biological drug product development and review processes,” what format and content must be submitted, and how the data will, or will not, be used in regulatory decision making.\textsuperscript{180} Moreover, although the submission of pharmacogenomic data is generally voluntary, the FDA guidance recommends that tests and drugs be co-developed, and all information submitted to the agency;\textsuperscript{181} this way a drug sponsor can “fully integrate pharmacogenomic data into the drug development program.”\textsuperscript{182}

Thus, in issuing its pharmacogenomics-related guidance, the FDA sought to remain consistent with existing agency policy.\textsuperscript{183} Mandatory genomic data submissions continue to be processed according to standard processing for routine application submissions.\textsuperscript{184} Moreover, the FDA provides detailed instructions for determining when a drug company is required to submit pharmacogenomic data for an IND.\textsuperscript{185} For example, if data is submitted to a known valid biomarker, the information must be submitted pursuant to 21 C.F.R. § 312.23.\textsuperscript{186} The FDA guidance provides a unique submission algorithm for each category because FDA regulations enunciate different requirements for INDs, unapproved NDAs and Biologics License Applications (BLAs), and approved NDAs and BLAs.\textsuperscript{187}

and probable valid biomarkers, which appear to have predictive value but may not yet be widely accepted).

\textsuperscript{179} Lesko Keynote Address, supra note 156.

\textsuperscript{180} 2005 FDA GUIDANCE, supra note 69, at 1.

\textsuperscript{181} Id. at 6.

\textsuperscript{182} Id.; see Hampton, supra note 50, at 33 (explaining that collaboration between the FDA and the pharmaceutical industry is important from a clinical perspective).

\textsuperscript{183} 2005 FDA GUIDANCE, supra note 69, at 3.

\textsuperscript{184} MANUAL OF POLICIES AND PROCEDURES, supra note 175, at 2.

\textsuperscript{185} 2005 FDA GUIDANCE, supra note 69, at 19–20. A company must submit a full report if:

1. The test results are used for making decisions pertaining to a specific clinical trial, or in an animal trial used to support safety (e.g., the results will affect dose selection, entry criteria into a clinical trial safety monitoring, or subject stratification).

2. A sponsor is using the test results to support scientific arguments pertaining to, for example, the pharmacologic mechanism of action, the selection of drug dosing or the safety and effectiveness of a drug.

3. The test results constitute a known, valid biomarker for physiologic, pathophysiologic, pharmacologic, toxicologic, or clinical states or outcomes in humans, or is a known valid biomarker for a safety outcome in animal studies or a probable valid biomarker in human safety studies. If the information on the biomarker (example, human CYP2D6 status) is not being used for purposes 1 or 2 above, the information can be submitted to the IND as an abbreviated report.

\textit{Id.}

\textsuperscript{186} Id. at 24.

\textsuperscript{187} Id. at 8–12 (explaining the algorithms in Section IV of the report).
Lesko predicted that the relation between submission format and which definition will apply to biomarkers within the “hierarchy” the guidance provides would be one of the most contentious issues with the guidance. Many claimed that the definitions in the guidance were unclear, and “you need[ed] a lot of specific examples to walk through them, either with a sponsor or with a review division at FDA.” Most likely in response, the FDA published Quick Reference materials, which contain a series of decision trees to make the process as clear as possible. The guide provides a simple table for determining when data is required to be submitted and when it may be submitted voluntarily. To clarify further, the FDA also issued an attachment to the guidance, providing prototypical examples of voluntary and required submissions.

Reactions to the guidance have been generally positive. In the first five years after its release, the agency received more than 40 VXDSs, resulting in more than 35 meetings between the FDA and industry sponsors. However, FDA representatives assert that “[i]ndustry sponsors have not fully embraced the [VXDS] concept as evidenced by the fact that numerous major pharmaceutical and biotechnology companies have never submitted a [VXDS] to the FDA.”

2. Other FDA Approaches

Pharmacogenomics has impacted the way entities that determine licensing and prescription of new drugs interact with entities that regulate and approve linked

188. Lesko Keynote Address, supra note 156.
189. Id.
190. See 2005 FDA GUIDANCE, supra note 69, at 19–24.
191. Id. at 24.
192. See FOOD & DRUG ADMIN., U.S. DEP’T OF HEALTH & HUMAN SERVS., ATTACHMENT TO GUIDANCE ON PHARMACOGENOMIC DATA SUBMISSIONS: EXAMPLES OF VOLUNTARY SUBMISSIONS OR SUBMISSIONS REQUIRED UNDER 21 CFR 312, 314, OR 601 (2005). However, some issues were not clarified—for example, how pharmacogenomics may affect how drugs will be classified as orphan drugs under the Orphan Drug Act of 1983. NAT’L INST. HEALTH, NIH COMMENTS ON FDA’S DRAFT GUIDANCE FOR INDUSTRY PHARMACOGENOMIC DATA SUBMISSION 2 (2004).
193. Goodsaid et al., supra note 170, at 435 (VXDSs have “a positive impact on the content of biomarker data in subsequent regulatory applications” and “industry is successfully integrating novel biomarker data in drug development.”).
194. Id. at 435. Goodsaid et al. note:

VXDS meetings have led to mutually beneficial and effective interactions between the FDA, the [European Medicines Agency], and sponsors of VXDSs (pharmaceutical companies, technology providers and academic researchers). Because of the importance of biomarker strategies and pharmacogenetics in drug development, as enumerated by the FDA’s Critical Path Initiative, the VXDS process is likely to adapt to meet the changing and growing needs of both the regulatory agencies and VXDS sponsors.

Id. at 444.
195. Lesko & Zineh, supra note 21, at 508 (explaining this reluctance may be based on “residual apprehension about the FDA review of voluntary genomic data, confusion over the requirements of a voluntary submission versus a required submission or the perception that it is not worth the time or effort to prepare and submit a [VXDS]”).
tests and other medical devices.\textsuperscript{196} For example, the FDA established the Office of Combination Products to “streamline the processing of complex drug-device, drug-biologic, and device-biologic combination products that play an increasingly significant role in health care.”\textsuperscript{197} Moreover, as part of the Critical Path Initiative, an effort to “stimulate and facilitate the modernization of the sciences through which regulated products are developed, evaluated, and manufactured,” the FDA has attempted to clarify co-development of pharmacogenomic-based therapeutic drugs and associated diagnostic tests.\textsuperscript{198} In April 2005, the FDA released its draft \textit{Drug-Diagnostic Co-Development Concept Paper}, which directly addresses drugs that require a genetic test before the drug is administered.\textsuperscript{199} It provides guidance regarding whether the therapy and diagnostic are required to be co-developed, approved together, or considered a combination product.\textsuperscript{200}

There are a number of additional ways in which the FDA could address the various implications of pharmacogenomics. The FDA’s 2005 guidance indicates that the agency is committed to educating the pharmaceutical industry about how pharmacogenomic data can be submitted to help a drug through the approval process.\textsuperscript{201} The FDA has set up a number of workshops focusing on the integration of genomics and diagnostics into the drug development process.\textsuperscript{202} Moreover, because the agency is concerned that FDA officials may not be prepared to deal with the number of INDs and NDAs containing genomic information that may be submitted, the FDA has sponsored a number of internal educational programs.\textsuperscript{203}

\textsuperscript{196} Shah, \textit{supra} note 16, at 7.
\textsuperscript{197} Press Release, Food & Drug Admin., FDA Establishes Office of Combination Products (Dec. 31, 2002).
\textsuperscript{200} Id. at 1–5.
\textsuperscript{201} See 2005 FDA GUIDANCE, \textit{supra} note 69, at 2–3, 14–16 (noting that with the guidance the FDA hopes to “clarify” its policy in terms of how pharmacogenomic testing will be used in the drug application review process).
\textsuperscript{202} See id. at 3 (indicating that in May 2002, the Agency and pharmaceutical industry groups held workshops to discuss the important issues surrounding “the application of pharmacogenetics and pharmacogenomics to drug development”).
\textsuperscript{203} See Lesko Keynote Address, \textit{supra} note 156. In his keynote address, Lesko indicated that: [The FDA has sponsored] a number of educational programs for people in the center to raise their awareness level and better prepare them for the applications they’re going to see. And they are going to see them because already we can see a significant increase in the number of INDs and NDAs coming in that contain genomic information, and we have to get a readiness in the staff.

\textit{Id.}
The FDA also has hosted a lecture series designed for scientists and created a new training program on genomics for review staff.\textsuperscript{204} Instituting more safeguards throughout the FDA approval process—for example, by requiring genetics experts on IRBs—may ensure that the increasing use of pharmacogenomics is encouraged while ensuring appropriate research participant protections.\textsuperscript{205} Another option is to build in-house regulatory expertise to monitor evolving regulations and to help the FDA determine how the regulatory process should apply to pharmacogenomics.\textsuperscript{206}

\textit{a. Increased Phase IV Monitoring}

In order to further regulate pharmacogenomics, the FDA may also require increased monitoring during phase IV trials, which take place after the drug or treatment has been licensed and marketed.\textsuperscript{207} The use of pharmacogenomics in premarketing studies may call for a greater focus on postmarketing surveillance.\textsuperscript{208} Since the premarket trial population will likely be small relative to current clinical studies, potential ADRs may not be identified as readily.\textsuperscript{209} Thus, continued postmarketing monitoring would allow a larger trial population than in the premarketing clinical trials, although use of the drug after FDA approval is not as controlled as during the approval process.\textsuperscript{210}

\begin{itemize}
\item \textsuperscript{204} Presentations on Genomics: FDA Genomics Group Presentations in 2010-2011, FOOD & DRUG ADMIN, http://www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/ucm085427.htm (last updated Sept. 27, 2011).
\item \textsuperscript{205} Binzak, supra note 72, at 115–16.
\item \textsuperscript{206} See SEC’Y’S ADVISORY COMM. ON GENETICS, HEALTH & SOC’Y, U.S. DEP’T OF HEALTH & HUMAN SERVS., REALIZING THE POTENTIAL OF PHARMACOGENOMICS: OPPORTUNITIES AND CHALLENGES 78 (2008) (explaining that because limited awareness about the impacts of pharmacogenetics by health care decision-makers could harm the advancement of the technologies, regulating bodies like the FDA must have adequate in-house expertise in pharmacogenetics).
\item \textsuperscript{207} Phase IV clinical trials are conducted in order to glean additional information regarding the drug’s risks, benefits, and optimal use. See 21 U.S.C. § 356a(b) (2006) (providing authority for monitoring the progress of post-marketing studies that drug and biologic applicants have agreed to conduct).
\item \textsuperscript{208} Noah, supra note 151, at 24 (“Because of the inherent limitations of clinical trials, pharmacogenomic interventions will not alter the existing need for postmarket surveillance . . . .”). One author recommends a more formal (and therefore more costly) phase IV system because of the smaller premarketing trials that will be a result of pharmacogenomics. Shah, supra note 16, at 7.
\item \textsuperscript{209} See Binzak, supra note 71, at 125–26 (noting the difficulty in detecting adverse drug responses in a phase III trial, in which only several thousand people may be included).
\item \textsuperscript{210} Postmarketing Surveillance Programs, FOOD & DRUG ADMIN, http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/ucm090385.htm (last visited Mar. 24, 2012) (noting that postmarketing surveillance is critical because all of a drug’s possible side effects cannot be determined based on preapproval studies that involve a maximum of several thousand patients and sometimes only several hundred). See also OFFICE OF TECH. ASSESSMENT, POSTMARKETING SURVEILLANCE OF PRESCRIPTION DRUGS 18 (1982) (noting that while clinical trials are conducted under strict rules, effects of a drug administered by a regular physician or outpatient clinic is not as controlled and cannot be fully assessed).
As phase IV trials become more indispensable for ensuring safety and efficacy, the Office of Post-Marketing Drug Risk Assessment, which is responsible for conducting epidemiological studies involving possible adverse outcomes, might be in the best position to regulate postmarketing surveillance. Critics argue that the FDA must be more “proactive” in “considering how it is going to regulate the new pharmacogenomic drugs already being developed.” However, increased focus on phase IV trials may stretch the FDA’s scarce resources even further. In 2002, the FDA reported that, of its 2400 postmarketing NDA commitments, only 882 had been completed.

Alternatively, the FDA may consider requiring drug developers that, in postmarketing surveillance, find that the number of ADRs is above a certain threshold set by FDA to perform pharmacogenomic studies of the drug or submit to withdrawal from the market. One critic claims that this could benefit drug manufacturers as well, because:

ADR studies could serve as an additional revenue stream in which the manufacturer could secure intellectual property rights in any pharmacogenetics test derived from its ADR studies and may avoid a complete withdrawal of its drug from the market by labeling changes that would permit the screening out of patients at risk from the drug.

However, one concern with shifting the focus to greater surveillance after FDA approval is that it might be dangerous to leave adverse event surveillance and reporting until a drug is already on the market. Doing so might potentially defeat the FDA mandate to ensure safety and efficacy by allowing the product onto the market before it has been fully demonstrated to be safe.

---

211. Mark A. Rothstein, Epilogue: Policy Prescriptions, in PHARMACOGENOMICS: SOCIAL, ETHICAL, AND CLINICAL DIMENSIONS 319, 324 (Mark A. Rothstein ed., 2003). FDA has authority to withdraw a drug from the market due to postmarketing study results. Id. at 325.


216. Id. at 746.

217. See Rena Steinzor & Margaret Clune, The Hidden Lesson of the Vioxx Fiasco: Reviving a Hollow FDA, CTR. FOR PROGRESSIVE REFORM WHITE PAPER NO. 514, OCT. 2005, at 11, 17–18 (highlighting the importance of pre-market drug safety reviews and how speeding up drug approvals can increase post-marketing risks).
b. Off-Label Use

An issue of major concern to the FDA is the problem of off-label prescription.218 Drugs are only FDA-approved for use in the permitted population, and drug companies are prohibited from encouraging off-label use.219 However, physicians are not subject to the FDA prohibition, because the agency does not regulate the practice of medicine.220 Thus, physicians are allowed to prescribe drugs for off-label use,221 which arguably ensures “clinical freedom” and fosters innovation, leading to the development of new treatments.222 The use of smaller, more targeted trial samples in clinical studies may have enormous implications once the drug is on the market, because the number of individuals for whom use of the drug would be off-label would potentially increase as the approved population shrinks.223 Further, because off-label use might be more dangerous for compounds developed via pharmacogenomics research than for other one-size-fits-all blockbuster drugs due to the risk of adverse drug reactions, it might be necessary to require more safeguards for off-label usage in the future.

Potential solutions to the augmented problem of off-label use exist and could be implemented alone or jointly. One option would require study groups to encompass more varied genotypes.224 This would extend required clinical studies on special populations prior to a drug’s approval, because small premarket targeted studies will mean that those with dissimilar genomes will not otherwise have been tested for adverse events.225 However, increasing the size of trial populations might directly counteract the benefit that pharmacogenomics presents for clinical trials.


220. Information Sheet, supra note 218.


222. MELZER ET AL., supra note 49, at 51.

223. Id. at 12; see also Randall S. Stafford, Regulating Off-Label Drug Use – Rethinking the Role of the FDA, 358 NEW ENG. J. MED. 1427, 1427–28 (2008) (noting that there has been no formal evaluation of off-label uses of drugs and evidence for a clinical situation might not apply to other situations).

224. MELZER ET AL., supra note 48, at 41 (recommending that a larger safety file than just the genotypic subgroup be required).

225. Id.
thereby negating the efficiency and safety advantages offered by the field. Some critics have also recommended that DNA samples be collected as part of adverse event reporting. This information could then be made available to the academic community for further research and analysis, to gauge if the compound is safe for use in the broader population. Alternatively, the FDA could offer a new class of conditional approvals for drugs targeted to particular subpopulations.

Moreover, physician education might be necessary regarding the dangerous consequences of off-label prescription for genetically-targeted drugs, while maintaining the legality of off-label prescribing. A final option, which will be discussed in more depth in section III.C, is to impose stricter liability on physicians who prescribe pharmacogenomics products off-label, resulting in harm to the patient.

B. The Orphan Drug Act

The often-cited “orphan drug problem” refers to industry’s reluctance, in light of financial limitations, to develop drugs for diseases that affect small segments of the patient population. Pharmacogenomics intensifies this problem because it divides patient populations into smaller subpopulations, thereby disincentivizing the development of new drugs for these discrete groups. Thus, economic “incentives for research may be weakest precisely where improved targeting is most needed.”

In 1983, Congress passed the Orphan Drug Act (ODA) to provide incentives for developing drugs for small markets. The ODA focuses on the 25 to 30
million Americans with one of almost 7,000 rare—or “orphan”—diseases.\textsuperscript{235} Currently, orphan drug status applies to drugs that are effective for fewer than 200,000 patients or those that affect a greater number, but for which “there is no reasonable expectation that the cost of developing and making available in the United States a drug for such disease or condition will be recovered from sales in the United States of such drug.”\textsuperscript{236} Patient population is determined by the total number of individuals with clinical symptoms, rather than those who would actually be eligible for use of the drug.\textsuperscript{237} This definition has great implications for products developed using pharmacogenomics.

Specifically, the ODA: (1) grants the sponsoring organization seven years of marketing exclusivity, beginning on the date of FDA approval for the designated orphan indication;\textsuperscript{238} (2) gives a 50 percent tax credit toward the financing of clinical trials in humans;\textsuperscript{239} and (3) provides grants up to 150,000 dollars for phase I studies and up to 300,000 dollars for Phase II and III studies.\textsuperscript{240} Through exclusivity incentives, drug developers may recover the costs of investing in expensive orphan genotypes.\textsuperscript{241} The FDA often grants priority review for orphan drugs, and therapies may also be considered for a rapid approval under the special accelerated process.\textsuperscript{242}
The ODA, sometimes called one of most successful laws Congress has ever written, enabled FDA not only to oversee drug development, but to take an active role. The Act is responsible for the largest single source of clinical grants from the FDA: in 2010, FDA awarded approximately 14 million dollars in grants for orphan drugs, funding 22 new grants and approximately 40 other ongoing clinical study projects. Since the passage of the ODA, 350 drugs for orphan diseases have received FDA approval. In contrast, in the decade before the ODA’s passage, less than ten drugs and biological products for rare diseases were brought to market. Further, “orphan drug product designations more than doubled” in the first decade of the twenty-first century. Notably, approximately 50 percent of the biologics approved for marketing in the U.S. since 1982 have been designated orphan drugs.

Not all pharmacogenomic products will attain orphan drug status under the ODA. Although it is “anticipated by industry that subgroups of patients, defined by genotype would qualify,” orphan status may not be certain, “particularly where the target population is only a subgroup of the disease indication.” A drug’s patient population is generally defined according to the total expected treatment population, not just those whom the pharmaceutical company identifies as eligible for clinical trials. Thus, Herceptin, which is often cited as a rational model for pharmacogenomics, was refused orphan status by the FDA for metastatic breast cancer because the agency disagreed with the drug sponsor’s interpretation of the size of the target population. The Office of Orphan Products Development

244. Morrow, supra note 232.
247. Id.
249. Morrow, supra note 232. However, managed care organizations have been hesitant to cover drugs approved via the orphan drug process, suggesting that the drugs are “less ‘proven’ than those developed through traditional pathways.” Id. One reason they cite is that double blind randomized controlled studies are often not possible because of the dearth of patients. Id. One alternative to such studies is historic-control trials. Morrow cites the approval of an enzyme which demonstrated efficacy in treating severe combined immunodeficiency (SCID) as a prime example of a historic-control study, which only had six patients enrolled in its pivotal trial. Id.
250. Melzer et al., supra note 48, at 41.
252. Nuffield Council on Bioethics, supra note 14, at 52 (indicating that the FDA considered Herceptin’s limited patient population of approximately 165,000 U.S. women with metastatic breast cancer as insufficient and opining that the FDA tries to restrict those drugs that obtain orphan designation to prevent pharmaceutical companies from dividing the market for economic benefit).
(OOPD) defended its decision not to grant the drug orphan drug status and explained that pharmacogenomic products would not be treated differently than other orphan drug submissions.253

However, many support the expansion of the ODA to apply to subpopulations identified via pharmacogenomic discoveries.254 To rectify the possibility that stratification of patients by their genetic makeup will lead to a dearth of treatments for those groups, the British Nuffield Council on Bioethics recommends that regulatory agencies prepare guidance that “use existing orphan medicine legislation, or any other policy instrument with equivalent effect, to provide incentives for development.”255 It has been suggested that Congress be encouraged to consider making the ODA more flexible and extending resources to the FDA to support the development of drugs for orphan genotypes.256

Application of the ODA, although incentivizing pharmacogenomic research by drug companies, gives rise to distributive justice questions related to the allocation of scarce research resources between different orphan disease groups.257 One critic recommends supplementing “moral theory with transparent, well-reasoned political debate” and advocates cost-benefit analysis in order to give preferential treatment to those drugs that are considered cost-beneficial.258

C. Legal Liability

As pharmacogenomic discoveries enter the market, higher diagnostic and prescription precision will likely lead to better matching between patients and the appropriate drugs, a reduction or elimination of adverse effects, and more targeted dosaging according to one’s individual metabolism.259 However, because of these advances, adverse events or ineffective treatments will be scrutinized. Who will bear the liability for side effects or unsuccessful therapies? Increased liability may encourage more diligence on both physicians and pharmaceutical manufacturers’

253. Jai Shah, Economic and Regulatory Considerations in Pharmacogenomics for Drug Licensing and Healthcare, 21 NATURE BIOTECH. 747, 749 (2003). Note that regardless of orphan drug status, Herceptin has become profitable. NUFFIELD COUNCIL ON BIOETHICS, PHARMACOGENETICS: ETHICAL ISSUES CONSULTATION PAPER 10 (2003). However, it is not clear that this will be true for other drugs with smaller patient populations. Id.
254. See Greely, supra note 22, at 8.
255. NUFFIELD COUNCIL ON BIOETHICS, supra note 14, at xix.
256. Rothstein, supra note 211, at 324 (encouraging increased funding for translational research to facilitate further innovation).
258. See id. at 270.
259. See Teresa Kelton, Pharmacogenomics: The Re-Discovery of the Concept of Tailored Drug Therapy and Personalized Medicine, 19 HEALTH LAWYER, Jan. 2007, at 1, 3 (describing the benefits of pharmacogenomic-based diagnostics).
parts. Often, the choice of defendant depends on who has the deeper pockets.\textsuperscript{260} Additionally, in the pharmacogenomic context, the choice of defendant may depend on whether advertising is direct-to-consumer or whether there is a third party intermediary.

There is currently little liability attached to mistakes related to drug prescription due to the presumption in law and ethics that medicine is “inherently imprecise” compared to other types of science.\textsuperscript{261} This presumption may have a deterrent effect on drug companies from developing targeted, more precise pharmacogenomic products. Because the law’s “special rules” regarding medicine may be based on outdated presumptions, they may necessitate evolution and modification.\textsuperscript{262}

One hindrance to holding a physician or drug company liable for deleterious drug effects or lack of efficacious treatment is the problem of demonstrating causation.\textsuperscript{263} Causation of an adverse event by a particular drug may be difficult to prove because of the complexities of environmental interactions, coupled with other possible causative factors. Moreover, defendants may use genetic discoveries to establish alternative causes for the adverse events for which they are being held responsible, using genetic information to demonstrate that the individual would have developed the illness regardless of the drug’s effect.\textsuperscript{264} The defendants could use an individual’s genetic susceptibility to an illness to demonstrate that they have no duty to protect “hypersensitive individuals.”\textsuperscript{265}


\textsuperscript{261} Evans et al., supra note 75, at 1289 (comparing the implied warranties of appliances to the vague and imprecise nature of medicine). One of the authors’ recommendations to incentivize pharmacogenomic research include reversing state statutes and court doctrines “that have long shielded medical product manufacturers from refund obligations.” Id. at 1290.

\textsuperscript{262} Id.

\textsuperscript{263} “The elements of a negligence claim are: (1) a duty of care owed by the defendant to the plaintiff, (2) breach of that duty through conduct that fails to meet the applicable standard of care, (3) harm or injury, and (4) a causal link between the injury and the breach of duty.” Sharona Hoffman, Responders’ Responsibility: Liability and Immunity in Public Health Emergencies, 96 Geo. L.J. 1913, 1926 (2008).

\textsuperscript{264} See Gary E. Marchant, Genomics and Toxic Substances: Part II – Genetic Susceptibility to Environmental Agents, 33 Envtl. L. Rep. 10641, 10648 (2003). For example, a “defendant could also argue that the plaintiff’s disease resulted solely from his or her genetic predisposition, which caused the disease to develop independent of any exposure to the defendant’s product.” Id. Genetic test could demonstrate that a person’s predisposition decreased susceptibility to a disease, thereby providing a useful defense against causation. A defendant could also “seek to test the plaintiff for other genetic variants that provide increased resilience to the toxic agent at issue, which would make that person less susceptible than the average person.” Id.

\textsuperscript{265} Id. Marchant provides:

In particular, defendants could assert what has sometimes been described as the “idiosyncratic response” defense. This defense protects from liability a defendant whose product or activity is harmless to the general public but may injure a small number of
Further, because of the complexity of genetic information, and the “perils inherent in broad statistical judgments based on science that will be inexact even in the best scenario,” it will often be impossible to demonstrate a simple cause and effect relationship between one’s genetic profile and the disease or side effects one exhibits.\textsuperscript{266} It is clear that not all tests are completely accurate, and the more complicated the gene interactions, the less accurate any prescription might be.

1. Individual Liability

Pharmacogenomics could be a double-edged sword, where physicians are penalized for either prescribing or withholding pharmacogenomically-developed drugs and treatments.\textsuperscript{267} It is unclear whether physicians will have an obligation to utilize pharmacogenomic diagnostics to hone an individual’s prescription to his or her genetic profile, or whether doctors can continue to follow the status quo in diagnosing and prescribing medicines.\textsuperscript{268} For example, a patient could sue his or her doctor for adverse events associated with a prescription given according to currently accepted standards, which may not have kept pace with scientific innovations. Will there be liability for \textit{not} testing for genetic predispositions or using a particular treatment?

A patient could ostensibly sue a physician for medical malpractice claiming that he or she refused to prescribe a drug (perhaps off-label) because it was not approved for his or her exact genetic makeup (i.e., he or she did not have the genetic predisposition of those involved in the clinical studies).\textsuperscript{269} Under the current liability regime, physicians may be sued for malpractice for negligent prescription of drugs, and courts have found doctors liable for failing to test for and prescribe the most appropriate drug for a particular individual.\textsuperscript{270} Pharmacogenomic discoveries may therefore render adverse effects more predictable than for other individuals with a unique and unusual susceptibility. This defense has generally been applied in cases where a plaintiff developed a rare allergic response to a cosmetic or similar product, but the defense would presumably also apply to cases where a plaintiff was harmed due to a rare genetic susceptibility to a product that is otherwise harmless to the general population.

\textit{Id.} Marchant continues, “[t]he formal justification for this defense is that the hyper-susceptibility of the plaintiff, rather than some defect in the product, is the proximate cause of the plaintiff’s injury.” \textit{Id.}

\textsuperscript{266} Evans et al., \textit{supra} note 75, at 1290.

\textsuperscript{267} See Mark A. Rothstein, \textit{Liability Issues in Pharmacogenomics}, 66 La. L. Rev. 117, 121–22, 124 (2005) (detailing the need to provide the best care to patients while protecting themselves from liability in the new venture of pharmacogenomics).

\textsuperscript{268} See \textit{id.} at 122 (indicating the possibility of potential liability in the future for failure to utilize newer, more individualized medication).

\textsuperscript{269} See Rothstein, \textit{supra} note 267, at 122.

\textsuperscript{270} See Noah, \textit{supra} note 151, at 24 & n.12.
drugs, and physicians may consequently be subject to stricter medical liability for off-label prescription of pharmacogenomics products.

Because of the probabilistic nature of genetics, it is unclear how high a possibility of a drug not working or having deleterious effects would be necessary to justify denial of treatment. If there is only a single available treatment, the threshold for refusing it may be higher than if there are multiple treatments from which to choose. Some critics recommend greater liability for negative outcomes or ineffective treatment results, worrying that there is the possibility that “[p]eople receiving a ‘negative’ test result will be denied a (more remote) chance of the drug working for them. Where there are no alternatives this may cause conflict.” They have called for new “standards to limit lawsuits against providers who deny treatments based on careful, evidence-based inferences that the therapy, if administered, would not work.”

2. Liability Against Pharmaceutical Companies

Pharmaceutical companies may also face liability for faulty products or for failure to warn consumers directly of the possible ADRs associated with their products. Once a patient is warned of the possibility of ADRs related to one’s genetic predisposition, however, it could be argued that the patient has assumed the risk and may therefore not recover if he or she experiences an adverse reaction.

To support a product liability claim, a plaintiff could also allege that the failure to use pharmacogenomic technologies resulted in a marketing or design defect. Because of the state of the technology, however, the required expert


273. See Greely, supra note 22, at 2 (discussing the potential levels of beneficence that will be required by regulatory bodies such as the FDA for approval of drugs that are effective for an identifiable and lesser part of the population or, alternatively, may only harm a particular and trivial part of the population while providing benefits to others).

274. See Evans et al., supra note 75, at 1290 (elaborating that although a group may not respond collectively when results are averaged, individuals within that group still have potential for response, and as a result, such individuals may be harmed if denied treatment, particularly when there are no other treatment options).

275. MELZER ET AL., supra note 48, at 49.

276. Evans et al., supra note 75, at 1290.

277. See Rothstein, supra note 267, at 118–19.

278. See Marchant, supra note 264, at 10650.

279. See Urquhart et al., supra note 17 (explaining that “failure to test” as a cause of action has been rejected as an independent claim by more cogent case law).
opinion may not make it past the gatekeeper, because it could not meet the scientific reliability standards of expert testimony required by *Daubert*.

Moreover, patients could attempt to hold pharmaceutical companies responsible for failing to incorporate pharmacogenomic technology into their drug development process. There is a noted lack of legal duty to use pharmacogenomics to discover potential new drugs and reduce major drug adverse reactions—for example, idiosyncratic liver injuries that occur on a rare basis with a number of drugs. Some critics, however, assert that individuals should not be able to sue a drug manufacturer for failure to use pharmacogenomics to develop a drug that will reveal an individual’s predisposition to deleterious side effects, because “[p]rematurely imposing an actual or de facto duty on drug makers to use these technologies will discourage the cooperative atmosphere needed to overcome the current limitations of pharmacogenetics and pharmacogenomics.”

3. Shifts in the Standard of Care

Pharmacogenomics may shift physicians’ expected standard of care, although it is unclear at what point and to what extent the standard will change to require physicians to conduct genetic tests and prescribe drugs accordingly. Critics have expressed concerns about imposing liability for adverse outcomes resulting from the use of pharmacogenomics in diagnosis and treatment decisions. In the future, healthcare providers can expect to bear a larger share of the costs when treatment options fail for lack of individualized treatment.

At the industry level, imposing legal liability may obstruct research by deterring pharmaceutical companies from engaging in pharmacogenomic development for fear of being sued. Greater precision may shift the standard of care such that companies could increasingly be held responsible for ineffective treatment or ADRs. As pharmacogenomics develops, treatment effectiveness and

280. *Daubert v. Merrell Dow Pharm.*, 509 U.S. 579, 589–90 (1993) (holding that the trial judge is the gatekeeper in deciding whether an expert’s testimony with respect to “scientific knowledge” meets the standard of evidentiary relevance and reliability). See also Urquhart et al., *supra* note 17 (explaining that expert testimony supporting claims of drug-induced liver injury should be excluded by the trial judge because the hypothesis that pharmacogenomics may identify at risk patients has not been tested, has not been supported in peer review materials, has an unknown error rate, and is not generally accepted by the scientific community).

281. See Urquhart et al., *supra* note 17 (hypothesizing that patients harmed by certain drugs may claim the drug manufacturer had a duty to implement pharmacogenomic testing techniques to identify possible adverse drug reactions).

282. *Id.*

283. *Id.*

284. See *Melzer ET AL.*, *supra* note 48, at 12, 49.

285. *Id.*

286. See generally Evans et al., *supra* note 75 (suggesting that policymakers establish incentives to encourage health care providers to develop more targeted therapies and avoid the 65 billion dollars wasted per year on therapies that either did not help or were detrimental to patients).
side effects will become increasingly within drug manufacturers’ control. One company, Novartis, has “offered customers a money-back guarantee on two of its antihypertensive drugs,” demonstrating behavior more like that of other industries than the drug industry. However, mandating such action “would be an extreme approach to the desired incentive structure . . . rife with ethical, social, industry and community concerns, even if science were fully ready to support it.” Thus, the FDA has explored a “safe harbor” from liability provision in any federal regulations involving pharmacogenomics in order to facilitate experimentation.

The anticipated changes to the standard of care for physicians and drug manufacturers may be, in part, a reaction to lawsuits that have been filed around the country. One such example are the personal liability suits in which, after taking the vaccine LYMErix, individuals claimed severe health problems akin to those associated with Lyme disease. The product was heavily advertised directly to consumers, and physicians expressed the common worry associated with direct-to-consumer genetic testing—that patients would demand prescriptions even when it was medically inadvisable. Additionally, “[o]thers feared vaccinated people would gain a false sense of security and let their guard down against ticks.”

In 1999, a number of affected individuals brought a class action case against the manufacturer of LYMErix, SmithKline Beecham, alleging that it had failed to warn doctors and the public that nearly a third of the general population (those with the HLA-DR4+ allele) is susceptible to developing autoimmune arthritis if they are exposed to the protein that makes the vaccine work. In 2000, many of those who participated in the class action suit also filed individually against the manufacturer, asking that it expand its vaccine labeling. The plaintiffs’ allegations included a failure by the drug company to warn consumers of the potential adverse effects of

287. Id. at 1289–90.
288. Id. at 1290.
289. Id.
290. See Urquhart et al., supra note 17.
291. See Rothstein, supra note 211, at 326 (noting that the various potential liability theories for suits related to pharmacogenomic claims). Rothstein specifically notes the following liability theories: “failure to order genetic testing, improper interpretation of genetic test results, failure to provide necessary genetic counseling, failure to prescribe the proper medication and dosage, failure to warn the patient of possible adverse events . . . and failure to dispense or administer the medication properly,” as well as, perhaps, failure to not prescribe a drug. Id.
292. Susan Warner, Patients Sue Over Effects of Vaccine a Medication to Prevent Lyme Disease Made Them Ill, They Say, in Court Filings Against SmithKline, PHILA. INQUIRER, June 13, 2000, at C1.
293. Id.
294. Id. (noting the vaccine has a rate of 78 percent effectiveness).
295. Cassidy v. SmithKline Beecham, No. 99-10423, 2003 WL 22216528 (Pa. Com. Pl. July 1, 2003). See also Rothstein, supra note 211, at 327 (using the Cassidy case as an example of potential liability for a drug manufacturer could face when there was a failure to warn).
the vaccine. In 2002, the drug was removed from the market due to a reduction in sales, likely resulting from the negative publicity surrounding the lawsuits. The class action case is particularly interesting because, first, rather than seeking compensation for past injuries, as tort law usually mandates, the plaintiffs sought “protection against the risks of future injury.” Second, the class was explicitly defined by genotype.

IV. CONCLUSION

Pharmacogenomics will have far-reaching and diverse effects on drug research and development. It promises to reduce adverse drug reactions and allow physicians to make more accurate diagnoses and prescription and dosage decisions. We as a society—individually and collectively—must choose the most appropriate regulatory and legal pathways in the effort to establish an adequate and protective system, both for individuals seeking new and effective drugs and society at large. The field of pharmacogenomics and associated genetic discoveries shape, and are shaped by, the current regulatory regime under the guidance of the FDA. Legal and policy decision-makers, as well as insurance companies and the pharmaceutical industry, are entrusted with the responsibility of making proper resource allocation decisions. By properly distributing resources through, for example, the Orphan Drug Act, we can ensure that certain historically underserved groups are given access to therapeutic advancements.

Each of the various players could positively or adversely affect the role that pharmacogenomics can and will play in providing therapeutic innovations to the

297. Id.
300. See, e.g., Marchant, supra note 264, at 10651 (citing court use of genetic heterogeneity as a factor for denying class certification in cases involving toxic injury).
301. See generally John A. Robertson et al., Pharmacogenetic Challenges for the Health Care System, 21 HEALTH AFF. 155, 159 (2002) (discussing the potential of pharmacogenetic research to enable physicians to prescribe safer and more effective medication). See also Mark A. Rothstein & Carlton A. Hornung, Public Attitudes About Pharmacogenomics, in PHARMACOGENOMICS: SOCIAL, ETHICAL, AND CLINICAL DIMENSIONS 3, 3 (Mark A. Rothstein ed., 2003) (noting how pharmacogenomics are likely to develop "new pharmaceutical products . . . that decrease adverse drug reactions and improve the treatment of many serious diseases.").
302. See Rothstein, supra note 211, at 328 (specifying four likely approaches the FDA may take with respect to pharmacogenomics, including regulation of test kits in clinical settings for commercial diagnostics, subdivision of target populations to enable better scrutiny, evaluation of clinical trials for safety and efficacy, and consideration of genetic factors when reviewing post-marketing safety data).
303. See Cheung et al., supra note 231, at 183 (specifying rare disease sufferers as one such historically underserved group).
public. The pharmaceutical industry must choose whether to pursue pharmacogenomic research and development, depending on financial and other incentives. Congress and the regulatory agencies must choose whether, and how, to encourage pharmacogenomic innovations while providing equal and fair access to targeted therapies and drugs. Policy-makers must also determine, through the patent system, how to balance the promotion of downstream pharmacogenomic research while protecting the rights of innovators. Likewise, they must consider the appropriate liability regime for industry, which must avoid discouraging the pharmaceutical industry from pursuing valuable therapeutic advancements. Liability laws must also continue to allow physician independence while still protecting the interests of the patient, striking a balance between the conflicting standards of paternalism and patient autonomy. In light of these diverse decisions, education regarding the promises and consequences of pharmacogenomics is a basic, but significant, necessity. The implications that the current legal regime has for pharmacogenomics, and vice versa, have only begun to be explored. However, it is imperative to proactively anticipate the potential dilemmas and issues associated with scientific advancement in order to keep legal and ethical considerations current with technological innovations. Only in this way can we hope to effectively advance, rather than hinder, appropriate technological progress while protecting the rights of individuals and ensuring that they receive the best medical treatment available.

304. See Evans et al., supra note 75, at 1291 (emphasizing that if legislators and courts at the federal, state and local levels do not create substantial incentives to promote research in tandem with private industry, a financial crisis may undermine the current therapeutic promise offered by pharmacogenomics).

305. See id. at 1289, 1290 (predicting that “bold leadership” will be required by regulatory bodies to guide the private industry through a “wrenching period of transition” towards targeted therapies); see also Rothstein, supra note 211, at 331–32 (arguing that leaving pharmacogenomic development and cost-setting completely to free market forces may result in worse health care access outcomes than currently exist and that Congress should tailor the Orphan Drug Act in light of the recent progress in pharmacogenomics).

306. See Nunnally et al., supra note 132, at 111, 118–119 (noting that while gene patents are critical for continued industry innovation in pharmacogenomics, legislators may narrow the scope of protection to address concerns that that the high cost of licensing fees may be inhibiting other medical research).

307. See Palmer, supra note 299, at 188 (arguing that the basic tenets of medical liability must be reexamined to account for “systemic approaches to risk reduction” for parties developing and allocating pharmacogenomics-based products).

308. See id. at 189–190 (noting a new “professional-patient dyad” must be developed allow theories of medical liability to accommodate advances in pharmacogenomics).

309. See MEELZER ET AL., supra note 48, at 12 (specifying that pharmacogenetics must become part of the undergraduate and postgraduate health professional educational programs); see also Rothstein, supra note 211, at 326 (describing the necessity for all health professionals to be trained in pharmacogenomics).